BACHELOR OF COMPUTER APPLICATIONS (BCA)

(Revised)

Term-End Examination

June, 2023

BCS-042: INTRODUCTION TO

ALGORITHM DESIGN

Time: 2 Hours

Maximum Marks: 50

Note: (i) Question **No.** 1 is compulsory.

- (ii) Answer any **three** questions from the rest.
- (a) What is complexity of algorithm? Explain space complexity and time complexity of algorithms with the help of example.
 - (b) Write linear search algorithm and do analysis of this algorithm for best case and worst case.5

(c) Using mathematical induction method, show that for all positive integers n: 5

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(d) What is Adjacency matrix? Write adjacency matrix for the following graph:5

2. (a) Write Depth-First Search (DFS) algorithm.

Also traverse the following graph using

DFS from node A.

(b) Solve the following recurrence relation using recurrence tree method: 3

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

3. (a) Write Kruskal's algorithm for finding

Minimum Cost Spanning Tree (MCST).

Find MCST of the following graph using

Kruskal's algorithm.

- (b) Explain use of Big oh (O) notation in the analysis of algorithms with example. 2
- 4. (a) Find the optimal solution to the knapsack (fractional) problem for n = 5 and m = 10, where n is the number of objects and m is the capacity of the knapsack.

Profit and weight of each object are given below:

- $(P_1, P_2, P_3, P_4, P_5) = (10, 30, 35, 20, 40)$
- $(W_1, W_2, W_3, W_4, W_5) = (3, 5, 2, 6, 11)$
- (b) In context of algorithm study, explain the following with the help of an example of each:
 - (i) Upper Bound
 - (ii) Backtracking
- 5. (a) Sort the following list using Bubble sort algorithm. Show the steps of sorting: 6
 30, 8, 7, 14, 20, 28, 10, 6
 - (b) Write algorithm for adding two matrices of order $m \times n$ and find its time complexity. 4